Microtubule depolymerization induces traction force increase through two distinct pathways.

نویسندگان

  • Andrew Rape
  • Wei-hui Guo
  • Yu-li Wang
چکیده

Traction forces increase after microtubule depolymerization; however, the signaling mechanisms underlying this, in particular the dependence upon myosin II, remain unclear. We investigated the mechanism of traction force increase after nocodazole-induced microtubule depolymerization by applying traction force microscopy to cells cultured on micropatterned polyacrylamide hydrogels to obtain samples of homogeneous shape and size. Control cells and cells treated with a focal adhesion kinase (FAK) inhibitor showed similar increases in traction forces, indicating that the response is independent of FAK. Surprisingly, pharmacological inhibition of myosin II did not prevent the increase of residual traction forces upon nocodazole treatment. This increase was abolished upon pharmacological inhibition of FAK. These results suggest two distinct pathways for the regulation of traction forces. First, microtubule depolymerization activates a myosin-II-dependent mechanism through a FAK-independent pathway. Second, microtubule depolymerization also enhances traction forces through a myosin-II-independent, FAK-regulated pathway. Traction forces are therefore regulated by a complex network of complementary signals and force-generating mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CaM kinase II initiates meiotic spindle depolymerization independently of APC/C activation

Altered spindle microtubule dynamics at anaphase onset are the basis for chromosome segregation. In Xenopus laevis egg extracts, increasing free calcium levels and subsequently rising calcium-calmodulin-dependent kinase II (CaMKII) activity promote a release from meiosis II arrest and reentry into anaphase. CaMKII induces the activation of the anaphase-promoting complex/cyclosome (APC/C), which...

متن کامل

Serum- and glucocorticoid-inducible kinase 1 (SGK1) increases neurite formation through microtubule depolymerization by SGK1 and by SGK1 phosphorylation of tau.

Serum- and glucocorticoid-inducible kinase 1 (SGK1) is a member of the Ser/Thr protein kinase family that regulates a variety of cell functions. Recently, SGK1 was shown to increase dendritic growth but the mechanism underlying the increase is unknown. Here we demonstrated that SGK1 increased the neurite formation of cultured hippocampal neurons through microtubule (MT) depolymerization via two...

متن کامل

Mitosis: Riding the Protofilament Curl

More than 50 years ago, microtubule depolymerization was proposed as the force responsible for chromosome movement. New studies measure the force produced by depolymerization and show that protein ring complexes can couple depolymerization to movement. These results have implications for anaphase chromosome motility and mitotic evolution.

متن کامل

Microtubules: A Ring for the Depolymerization Motor

Newly discovered rings around microtubules, assembled from the Dam1 protein complex, may provide the dynamic linkage at microtubule ends for force generation coupled to microtubule depolymerization and polymerization.

متن کامل

Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles

In mitosis, kinetochores are initially captured by the lateral sides of single microtubules and are subsequently transported toward spindle poles. Mechanisms for kinetochore transport are not yet known. We present two mechanisms involved in microtubule-dependent poleward kinetochore transport in Saccharomyces cerevisiae. First, kinetochores slide along the microtubule lateral surface, which is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 124 Pt 24  شماره 

صفحات  -

تاریخ انتشار 2011